Presentation Abstract

Program#/Poster#: 748.01

Presentation Title: A bluetooth wireless brain-machine interface for general purpose computer use

Location: N226

Presentation time: Wednesday, Oct 21, 2015, 1:00 PM - 1:15 PM

Topic: ++D.18.c. Neuroprosthetics: Control of real and artificial arm, hand, other grasping devices

Authors: *P. NUYUJUKIAN1,2,3, C. PANDARINATH1,2,3, C. BLABE1, L. HOCHBERG7,8,10,11,9, K. SHENOY2,3,4,5,6, J. HENDERSON1,3;

Abstract: Advances in brain-machine interfaces (BMIs) have demonstrated the potential of these systems to serve as important communication avenues. We recently demonstrated the highest performing BMIs for communication in clinical trial participants (Nuyujukian*, Pandarinath*, et al., SfN 2014 & Pandarinath*, Nuyujukian*, et al., SfN 2014). As is the case with most BMIs to date, this system was comprised of custom software packages and the interface was not user-updatable. The next step in the design of practical BMIs for communication would be to create a system that is broadly usable, similar to how computer peripherals can interface to a variety of computers through common interfaces (e.g., USB). Additionally, wireless transmission of control signals would simplify the interface, facilitating portability and ease of use. We addressed both of these issues by developing a general purpose BMI interface for communication which outputs signals using the Bluetooth (mouse) standard. In this fashion, the wireless BMI could pair with many types of standard computing hardware, ranging from computers to tablets. We tested this general purpose interface with participant T6 of the BrainGate2 pilot
clinical trial. T6 is a 52 year old woman diagnosed with ALS who was implanted with a multielectrode array in motor cortex. After training a two-dimensional cursor and click decoder as reported last year, she used the wireless BMI to control an unmodified Android tablet. We conducted an experimental session with this system and she navigated the Android operating system interface, browsed the web, searched for and played online videos, searched for and played music, and composed three emails to researchers. This proof-of-concept demonstration illustrates one potential use for communication BMIs that uses wireless signal transmission to control off-the-shelf consumer hardware.

Disclosures:

- **P. Nuyujukian:** None.
- **C. Pandarinath:** None.
- **C. Blabe:** None.
- **L. Hochberg:** None.
- **K. Shenoy:** None.
- **J. Henderson:** None.

Keyword(s): Brain-machine interface

Support:
Stanford Institute for Neuro-Innovation and Translational Neuroscience
Stanford BioX/NeuroVentures
Stanford Office of Postdoctoral Affairs
Garlick Foundation
Craig H. Neilsen Foundation